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Abstract: An equivalent energy-dependent local potential for a two-term nonlocal potential is constructed to study the alpha-

alpha system. The s-wave phase shifts are computed by exploiting an efficient approach, the phase function method, to judge the 

merit of our constructed potential. Reasonable agreement in phase shifts is achieved with experimental results. 

 

I INTRUDUCTION 

Investigation of the scattering theory is important because many important discoveries in the nuclear and the atomic physics 

have been made by bombarding a nucleus or an atom by particles and measuring the number of particles scattered in various 

directions. The subject matter to α-α interaction dates back to the discovery of radioactivity by Becquerel and Curies in 1896-

1898 when the α particle was discovered. However, the first α-α scattering was performed by Rutherford and Chadwick (1927) 

[1] when they investigated the scattering of α particle by He-nuclei. Oppenheimer (1927) [2] and Gordon (1928) [3] put the 

classical theory on the table to solve the problem however Mott (1930) [4] called it a partial wave analysis problem. Years later, 

Mott’s formulae was verified by Heydenberg and Temmer (1956) [5], who covered the energy range from 150keV to 3MeV (lab 

frame) between lab angles of 10ْ and 80ْ. They also concluded that the nuclear interactions come into play at energies greater than 

400 keV as phase shift decreases from 180ْ at 400 keV to about 120ْ at 3 MeV. They were also able to explain and explore the 

ground state energy region of Be8.  

As the technology advanced, higher energy scattering experiments were performed by several workers [6-12]. Summarising, 

the energy phase shift relations so far, we have: Below 400 keV there is no evidence of nuclear interactions. The S wave phase 

shift starts at this energy point with a value of 180ْ and decreases monotonically with energy while passing through zero at 22 

MeV and then becomes negative. The D wave starts at 2.5 MeV, attains a maximum of 120ْ at about 8 MeV and then starts 

decreasing. The G wave starts at about 4 MeV and then increases with energy. The I wave is first observed at 20 MeV and is 

positive. The three energy levels established so far are: the 0+ level at ~92 keV, the 2+ level at ~3 MeV and 4+ level at ~11 MeV. 

From the aforesaid experimental results, many attempts were made to construct an α-α potential which could reproduce the 

experimental phase shifts. There have been two famous approaches to the problem: The two nucleon interaction and the 

Resonating Group Formalism. 

Earliest attempt in constructing phenomenological α-α potential came from Haefner (1951) [13].  Latter on Humphrey (1957) 

[14] reproduced the phase shifts for 0-22 MeV with modified Haefner potential with his best fit which required an l- dependent 

well depth. Verification of the above idea came when Van der Spuy and Pienaar (1958) [15] indicated that for square well 

analysis even at low energies (E<6MeV), one needs a velocity dependent interaction with a core of radius of about 1.8 fm. This 

schematised the idea of l dependence of the core. Igo (1960) [16] made an optical model analysis with the use of complex 

potential. However the introduction of a non zero imaginary part of the potential which was necessary to reproduce the reaction 

cross section, had negligible effect on the real part of the phase shifts. An attempt at effective range theory by Russell, Phillips 

and Reich (1956) [7] could only schematise that if the velocity dependence is to be attributed to l-dependence then the α-α 

interaction should be characterised by an l dependent inner core rather than an l -independent one. 

For the part of the “Resonating Group Formalism” of Wheeler (1937b) [17], the wave functions of the composite nucleus are 

written as a totally anti-symmetrised combination of the wave functions for the various possible groups in the nucleons. However 

as pointed out later by Herzenberg (1955, 1957) [18], the Be8 state to be virtual which reduced the eight body problem to a two 

body interaction. Herzenberg also revived the α Particle Model of nuclei and also explored several interesting features of α-α 

interaction. In 1977 Buck, Friedrich and Wheatley [19] proposed a two-parameter angular momentum and energy-independent 

local Gaussian potential. Marquez [20] successfully described the    system by considering a Woods-Saxon type potential 

for the nuclear part of the interaction. Subsequently, in 1984 it was proved [21] that the Potential of Buck et al. [19] and the one 

proposed by Marquez [20] are identical. In the meantime, several sophisticated potential models for the light nuclei systems have 

also been proposed [22-26]. The present text addresses itself to the study of alpha-alpha scattering by an energy-dependent 

potential. This energy-momentum dependent interaction will be constructed from a two-term nonlocal potential. For simplicity of 

calculation we treat only the s-wave scattering. In section II we present the prescription for constructing energy-dependent 

potential equivalent to a nonlocal potential. Section III is devoted to calculation of phase shifts, related results and discussions. 

Finally, we conclude in section IV. 

 

III ENERGY-MOMENTUM DEPENDENT POTENTIAL 

Here we shall deal with a two-term separable potential for the nuclear part of the (   ) interaction and examine the effect 

of electromagnetic distortion on the nuclear scattering phases. The potential for 0 has an attractive and a repulsive 
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component. The strong repulsion due to Pauli Exclusion Principle obeyed by the nucleons is thus accounted for in a 

phenomenological way. The two-term separable potential is written as 

),(),(),(),(),( 222111 rgrgrgrgrrV  
                                                               

(1) 

with the form factors 
rerg  ),(1 ; 

rerg  ),(2 .                                                                                                   (2) 

For electromagnetic part, that takes care of the charges, we consider a screened Coulomb potential, the Hulthén [27] one 

expressed as 

.0,))/exp(1/()/exp()( 0  aararVrVH                                                                        (3) The strength 

parameter 0V  for the Hulthén potential is real and positive. The quantity a  is the screening radius. The S-wave Schrödinger’s 

equation for rank-2 separable potential is written as 
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For the regular solution ),( rkN  the integral equation corresponding to Eq. (4) is written in the form 
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The regular solution corresponding to local and non-local potentials [28] is related by 

),(),(),( rkrkArk LN                                                                                                                         (10) 

where ),( rkA is the damping function. The damping factor ),( rkA is related to the on shell irregular solution through 

relation 
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Here ),(* rkf  and ),( rkf   represents the complex conjugate of the on shell irregular solution for rank-2 potential and its 

derivatives with respect to r . The on shell irregular solution for rank -2 potential reads as  
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The quantities used in Eq. (12) are as follows: 
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Using Eqs. (12-16), (20) and (21) in Eq.(8) one can easily obtain the irregular solution for the corresponding local potential. 

The equivalent local potential for rank-2 separable potential is obtained as [28] 
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Here ),( rkJ  and ),( rkJ   are the first and second order derivatives of ),( rkJ  with respect to r and the term ),,( srkQ  

is related to the on -shell irregular solution as 
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Combining Eqs. (11)- (29) one is now in a position to write an expression for the equivalent energy-dependent local potential 

for the two-term nonlocal potential. Using this potential we shall compute the s-wave alpha-alpha scattering phase shifts by 

applying the phase function method (PFM) [29]. 

 

III  PHASE SHIFTS, RESULTS AND DISCUSSIONS 

The phase function method is an efficient approach to compute the scattering phase shifts for quantum mechanical problems 

involving local [29] and nonlocal interactions [30-32] and is based on the separation of radial wave function of the Schrödinger 
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equation into an amplitude part ),( rk and an oscillating part with variable phase ),( rk . The function ),( rk called the 

phase function, describes the meaning of phase shift, at each point of the wave function for scattering by the potential truncated at 

a distance r . For a local potential ),( rk satisfy a first order non-linear differential equation given by 

 2
1 ),(sin)(ˆ),(cos)(ĵ)(),( rkkrrkkrrVkrk    

                                                (30) 

with )(ĵ kr  and )(ˆ kr the Riccati Bessel functions. Here ),( rk  indicates the derivative of ),( rk with respect to r . 

We shall follow the phase convention of Calogaro [29] with Riccati Hankel function of first kind written as 

)(ˆ)(ˆ)(ˆ1 xjixxh    . The scattering phase shift )(k  is achieved by solving the equation from origin to asymptotic 

region with the initial condition 0)0,( k . Finally, one gets the phase shift ),()( rkLimk
r
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Now one will be able to compute scattering phase shifts by utilizing our constructed local potential in conjunction with Eq. 

(30). We have chosen to work with fmafmaV 20,2758.0 1

0  
and .3675.102/ 22 fmMeVm  The parameters for 

our nonlocal potential are 
3

1 97.0  fm , 
3

2 0159.9  fm , 
137.0  fm  and 

190.0  fm . As the screening 

radius is considered to be fma 20 , much more than nuclear range, the atomic Hulthén potential reproduces the effect of  the 

Coulomb potential. The phase shifts are plotted in Fig. 1 along with the experimental data [33]. 
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Fig. 1:  Alpha-alpha phase shifts as a function of laboratory energy. 

Looking closely into fig. 1 it is observed that the s-wave phase shift is positive at lower energies and becomes negative as 

energy increases. Our results for the nonlocal potential discern from standard data [33] in the low energy range i.e. up to 12.5 

MeV and beyond that match well with those of ref. [33]. The phase shift changes sign at about 19.5 MeV which is in good 

agreement with experimental result [33]. In contrast to this our equivalent local potential produces better agreement with ref. [33]. 

They slightly differ from experimental result [33] beyond 15 MeV and changes sign at 22.5 MeV. In the low energy range the 

agreement in phase shifts is quite good. Our phase shift values for nonlocal potential indicate pure nuclear phase shift while the 

same for the local one is electromagnetic plus nuclear. Thus, the equivalent local potential is superior to its nonlocal counterpart. 

 

IV CONCLUSION 

The use of separable nonlocal interactions to fit two-nucleon and nucleus-nucleus phase shifts in various angular momentum 

states is well established. An equivalent local potential analysis to a nonlocal one is quite common in optical potential model. 

These methods include a comparison between the characteristics of nonlocal potentials and the phenomenological local potentials. 

The present technique includes a method for generating smooth potential and computation of phase shifts by exploiting a very 

accurate method like the PFM.  It is worthwhile to mention that the nonlocal separable or energy-dependent local interactions of 

various shapes are generally used in the folding models for alpha-nucleus scattering. The present method can easily be extended 

for nonlocal potentials of higher rank. Therefore, it is our belief that this straightforward approach to the problem deserves some 

attention for treating complex nucleus-nucleus systems. 
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